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Abstract
This paper introduces a new class oj simple nonlinear PID-type  controllers com-

prised of a sector-bounded nonlinear gain in cascade with a linear fixed-gain P, PD, PI,
or PID controller. Three simple nonlinear gains are proposed: the sigmoidal  function,
the hyperbolic function, and the piecewise-linear  function. The systems to be controlled
are assumed to be modeled or approximated by second-order transfer-functions, which
can represent many robotic applications. The stability of the closed-loop systems in-
corporating nonlinear P, PD, PI, and PID controllers are investigated using the Popov
Stability Criterion. It is shown that for P and PD controllers, the nonlinear gain is
unbounded for closed-loop stability. For PI and PID controllers, simple expressions are
derived that relate the controller gains and system parameters to the maximum allowable
nonlinear gain for stability. A numerical example is given for illustration.

1 Introduction
Undoubtedly, PID controllers have been the most popular and the most commonly used
industrial controllers in the past fifty years. The popularity d widespread  use of PID or
three-term controllers is attributed primarily to their simplicity and performance characteris-
tics, where the I term ensures robust steady-state tracking of step commands while the P and
D terms provide stability and desirable transient behavior. PID controllers have been utilized
for the control of diverse dynamical systems ranging from industrial processes to aircraft and
ship dynamics. In fact, industrial robotic manipulators invariably use PID controllers in their
independent joint servo control systems.

While linear fixed-gain PID controllers are often adequate for controlling a nominal phys-
ical process, the requirements for high-performance control with changes in operating condi-
tions or environmental parameters are often beyond the capabilities of simple PID controllers.
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For instance, when a robotic arm is, contacting a reaction surface with a known stiffness coef-
ficient, a linear fixed-gain PID controller can be designed to achieve a desirable force response
with zero steady-state error, low overshoot, and rapid rise time. However, the same controller
typically exhibits a sluggish response in contact with softer surfaces, and becomes unstable
when contacting harder surfaces. In other words, because the stiffness coefficients of differ-
ent reaction surfaces can differ substantially, a fixed-gain PID controller design based on a
nominal surface stiffness leads to a non-uniform dynamic performance and often instability.
This problem can be alleviated, to a large extent, by employing nonlinear elements in the
PID control scheme. These elements can compensate for stiffness variations and yield stable
and uniform responses. Even when the reaction surface stiffness is constant and known, a
nonlinear PID controller can result in superior command tracking and disturbance rejection
performances compared to linear fixed-gain PID controllers, as demonstrated in a recent
paper on a nonlinear PD controller for robot contact control [1].

This paper presents a simple enhancement to the conventional PID controller by incorpo-
rating a nonlinear gain in cascade with a linear fixed-gain PID controller. This enhancement
enables the controller to adapt  its response based on the performance of the closed-loop con-
trol system. When the error between the commanded and actual values of the controlled
variable is large, the gain amplifies the error substantially to generate a large corrective ac-
tion to drive the system output to its goal rapidly. As the error diminishes, the gain is
automatically reduced to prevent large overshoots in the response. Because of this automatic
gain adjustment, the nonlinear PID controller enjoys the advantage of high initial gain to
obtain a fast response, followed by a low gain to prevent large overshoots.

The paper is structured as follows. The problem is stated in Section 2. Absolute stability
of the closed-loop systems incorporating nonlinear P, PD, PI, and PID controllers are inves-
tigated in Sections 3–6. A numerical example is given in Section 7 for illustartion.  Finally,
conclusions drawn from this work are presented in Section 8.

2 Problem Statement
In this section, we describe the system under control and discuss its performance using a
nonlinear PID controller.

2.1 System Description

In many robotic applications, the dynamics of the system to be controlled can be adequately
modeled by a second-order differential equation. Even when the system dynamics is of higher
order, the response of the system is often largely dependent on the location of a pair of
dominant complez poles, which can be embodied in a second-order model [2]. Examples of
such robotic systems are: joint servo dynamics, arm Cartesian dynamics, force control, and
compliance/impedance control. In these systems, the second-order transfer-function relating
the system output g(t)  to the control input u(t) is given by
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G(s) = ~ = ‘;i c
S2 + 2(wns + w: ‘s2+as+b

(1)

where ~, Wn, and k denote, respectively, the damping ratio, natural frequency, and DC gain.
of the system, a = 2~wn, b = w:, and c = w~k.

The new class of controllers presented in this paper consists of a nonlinear gain k in
cascade with a linear fixed-gain PID-type controller K(s) = kP + ~ + kds, where kP, ki, and
kd are the positive or zero constant proportional, integral, and derivative gains, respectively.
The nonlinear gain k acts on the error e(t) = yr(t)  – y(t) between the actual output y(t)
and the desired output y,(t), and produces the “scaled” error $(t) = k(e) .e(i!),  where k(e)
denotes a function of e. The scaled error ~(t)  is then inputted to the PID controller K(s)
which generates the control action u(s) = K(s) f(s) to drive the system, as shown in Figure
la. Three choices for the nonlinear gain k are discussed next.

2.2 Nonlinear Gains

The gain k can represent any general nonlinear function which is bounded in the sector
O < k < k~.z. The input-output characteristics of the sector-bounded nonlinear gain k is
depicted in Figure lb; showing that the output ~ lies within the shaded sector O < ~ < k~az.e.
There is a broad range of options available for the nonlinear gain k. Here, we propose three
examples of such functions. The first proposed nonlinear gain k as a function of the error e
is the smooth sigmoidal  function

k=kO+kl
{

2
– 1

1 + ezp(–k2e) }
(2)

where kO, kl, and kz are user-defined positive constants. The gain k is lower-bounded by
kmin = kO _ kl when e = –00, is upper-bounded by km.= = k. + kl when e = +cm,  that is
kmin < k < kmaz, and furthermore k = k. when e = O. Thus kO defines the central value of
k, kl determines the range of variation of k(= k~a, – k~in = 2kl) with kl S k. to ensure
k >0, while k2 specifies the rate of variation of k. Figure 2a shows a typical variation of k
as a function of e when ko=2, kl=l, and k2=0.5, and shows that k has an ‘S-shaped” curve.
Notice that using equation (2), the nonlinear gain k has equal excursions of *kl for positive
and negative error e. When unequal + excursions of k are required, the error e in equation
(2) is replaced by the shifted error e + A, where A is a user-specified constant. When A >0,
the plot of k versus e from equation (2) is shifted to the left by the amount A, and the
excursion of k for negative e is larger than that for positive e. Likewise, when A < 0, the
plot is shifted to the right by A, and the excursion of k for positive e is larger than that for
negative e. Thus, by a judicious choice of A, we can attain the desired unequal excursions of
k for &e.

The second proposed choice for the gain k as a function of the error e is the hyperbolic
function
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{
k = kO+kl  l–

2
exp(k2e)  + ezp(–k2e)“ }

= k.+ kl{l – sech(k2e)}

(3)

(4)

where kO, kl, and k2 are user-defined positive constants. The gain k is now upper-bounded by
k –kO+klwhene=max — ho, and lower-bounded by k~in = kO when e = O. Thus k. defines
the minimum value, kl denotes the range of variation, and k2 specifies the rate oj variation of
k. Figure 2b shows a typical variation of k versus e when kO=l, kl=l, and k2=0.5. It is seen
that k is an “inverted bell-shaped” curve, and is an even function of e, that is k(–e)  = k(e).
This class of nonlinear gains is applicable when k is required to be a function of the error
magnitude Iel.

The third class of nonlinear gains that can be used are piecewise-linear  functions. For
example, k can be chosen as a bounded piecewise-linear  function of e as

{

kmax for e ~ em..

k =
k.+kle  for O < e < em.Z
kO + k2e for e~in < e <0

(5)

kmi~ for e ~ emi.

where k. is the central value (for e = O), k l and k2 are the slopes for &e, and (kmQz, emaz)  and
(kmi.,  em,.) are the upper and lower bounds, respectively. A typical variation of k versus e is
shown in Figure 2C for k~=z = 5,kmin  = l,kO = 2,k1 = 0.5, kz = I,ema. = 6, and emi. = -1 .
In the special case when kmin = kO=k2=0  andemi.  =0, we obtain k= Ofore<O,  k=kle
for O < e < emaZ,  and k = km.z for e ~ emaZ. This type of nonlinear gain is used in a robot
collision avoidance control system [3].

2.3 System Performance
The motivation for using the nonlinear gain k is now discussed qualitatively. Consider the
closed-loop control system shown in Figure la. When k is a constant, the linear PID controller
gains can be chosen such that for a step command input, the closed-loop system exhibits either
an oscillatory fast response with overshoot or a monotonic slow response with no overshoot.
In other words, the linear PID controller is incapable of accomplishing the two contradictory
requirements of a fast response and no overshoot simultaneously. On the other hand, when
the gain k is a nonlinear function of the error e, such as the sigmoidal function defined earlier,
initially the error e between the command y, and the output y is large, hence the gain k will
be large, producing a fast response. As time proceeds and the error e is diminished, the
gain k will be reduced automatically. When the output y overshoots the command y,, the
gain k is reduced even further, thus inhibiting further overshoot. Therefore, the automatic
adjustment of the gain k as a function of the error e can produce a fast response with a
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small overshoot, a behavior that is unattainable by a linear fixed-gain PID controller. This
argument can be repeated when the system is subjected to disturbance inputs, whereby the
nonlinear gain enables the system to exhibit a fast non-oscillatory response.

For the sake of illustration, MatM is used to simulate the control system shown in Figure
la with the linear plant G(s) = ~Z+#”+z5, the fixed-gain PI controller K(s) = 5 + ~, and the
nonlinear gain k. For a constant gain of k = 1, the unit step response (at t = 0.1 see) of
the closed-loop system is shown in Figure 3a, indicating that the transient response is slow
with the settling time of about 0.5 sec. Now, let us use the nonlinear gain k as a hyperbolic
function of the tracking-error e, that is, k = 1 + 4 [1 – 1 where k can now vary
in the range 1 < k < 5 depending on the value of e. ‘Tf2%&ti00p  unit step response
is shown in Figure 3b, exhibiting a fast transient response with the settling time of 0.2 sec
and no overshoot. By comparing Figures 3a and 3b, it is clear that the nonlinear gain has
improved the system response considerably by speeding up the transient response without
causing oscillations. The variation of the gain k versus time is shown in Figure 3c, exhibiting
a sudden rise from the initial value k(0) = 1 to about 2.4 and then drop back to 1 after
0.2 sec when the steady-state is reached. This transient change in k is responsible for the
reduction in the settling time without ensuing oscillations, and hence the improvement in the
step response. Note that obtaining such a fast response using a linear PI controller yields an
oscillatory behavior.

Consider now the closed-loop control system shown in Figure la with a general sector-
bounded nonlinear gain k depicted in Figure lb. Because of the nonlinear nature of k, the
stability analysis of the closed-loop system is non-trivial. We shall now present the stability
analysis of the closed-loop systems with different types of nonlinear PID controllers.

3 Stability Analysis
In this case, the closed-loop system

of Nonlinear P Controllers
employs the proportional (P) controller

K(S) = kP (6)

in cascade with the nonlinear gain k, where kP is the positive constant proportional gain.
To investigate the absolute stability of the closed-loop system, we combine the linear

components (1) and (6) as

W(s) = G(s)K(s) = ~2 +C: + ~ (7)

which is a second-order transfer-function, and separate out the nonlinear element which is the
gain k. We can now apply the Popov Stability Criterion [4, 5] to the system by examining
the Popov plot of VV(joJ), which is the plot of 7?eW(.jw)  versus wZrnW(jU),  with o as a
parameter and 7Ze and Zm refer to the real and imaginary parts, respectively. This plot
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reveals the range of values that the nonlinear gain k can assume while retaining closed-loop
stability. The Popov Criterion can be stated graphically as follows:

“A suficient  condition for the closed-loop system to be absolutely stable for all nonlinear
gains in the sector O < k < kmaz is that the POPOV plot of W (.jw) lies entirely to the right of
a straight-line with a non-negative slope passing through the point – & + jO.”

In order to apply the Popov Criterion to the system, we need to compute the crossing of
the Popov plot of W’(jo)  with the real axis. In this case, from equation (7), we obtain

ckP(b – LJ2)
7?eVV(jU)  = ~Zwz + (b_ ~z)z

–ackpu2
wZmW(jo)  =

a%.J + (b – W2)2

Thus the Popov plot of W (ju) starts at the point P(*, O) for
point Q(O, O) for w = W. A typical Popov plot for a = 20, b =
in Figure 4.

(8)

(9)

w = O and terminates at the
c = 25, and kP = 1 is shown

Fkom equation (9), it is seen that wZmW(ju)  is always negative for all non-zero w, that
is, the Popov plot of W(jw)  remains entirely in the third and fourth quadrants and does not
cross the real axis. This implies that we can construct a straight-line with a non-negative
slope passing through the origin such that the Popov plot is entirely to the right of this line.
Therefore, according to the Popov Criterion, the range of the allowable nonlinear gain k is
(0,00).

4 Stability Analysis of Nonlinear
In this case, we employ the proportional-derivative (PD)

K(S) = kP + kds

PD Controllers
controller

(lo)

in cascade with the nonlinear gain k, where kP and kd are the positive constant proportional
and derivative gains, respectively.

To investigate the absolute stability of the closed-loop system, we combine the linear
components (1) and (10) as

c(kP + kds)
W(s) = G(s)K(s)  = ~2 + as + b (11)

which is a second-order transfer-function, and separate out the nonlinear element which is the
gain k. To find out the range of values that the nonlinear gain k can assume while retaining
closed-loop stability, we examine the Popov plot of W (jw).  In this case, from equation (11),
we obtain
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c[(akd - kP)w2 + bkP]
7?eW(ju) =

a2u2 + (b – W2)2

–ti2[k&i + (akp  – bh)]
Whzw(jld) =

a2u2 + (b – w2)2

(12)

(13)

The Popov plot of W (jw) starts at the point P(%, O) for w = O and terminates at the point
Q(O, –ck~) for w = co. Two cases are now possible depending on the relative values of kP
and kd.

4.1 Case One: bkd < ukp

In this case, from equation (13) it is seen that wZrnW(jw) is always negative for all non-zero
w, that is, the Popov plot of VV(jw) remains entirely in the third and fourth quadrants and
does not cross the real axis. Therefore, according to the Popov Criterion, the range of the
allowable nonlinear gain k is (O, cm). A typical Popov plot for a = 20, b = c = 25, kP = 1, and
kd = 0.3 is shown in Figure 5a, and confirms the above analysis.

4.2 Case Two: b~d > akp

In this case, the Popov plot of W(jw)  crosses the real axis. The crossover frequency WO is
found by solving wXmW(jw)  = O to yield

z _ bkd – akP
w~ —

kd

and the value of W(jwO)  is then found to be

ckd
ReW(jwO)  = —

a

(14)

(15)

which indicates that the Popov plot crosses the positive real axis in this case. The general
shape of the Popov plot can be seen from a typical case shown in Figure 5b, where a =
20, b=c=25,  kP=l, andk~= 1. It is seen that it is possible to construct a straight-line
with a positive slope passing through the origin such that the Popov plot is entirely to the
right of this line. Hence, from the Popov Criterion, the range of the allowable nonlinear gain
k is (O, cm).

We conclude that in both cases, the closed-loop system is always stable under PD control
with unbounded nonlinear gain k.
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5 Stability Analysis
In this case, the closed-loop system

of Nonlinear PI Controllers
employs the proportional-integral

K(S) = kP + :

in cascade with the nonlinear gain k, where kP and k i are the positive
and integral gains, respectively.

To investigate the absolute stability of the closed-loop system, we
ponents (1) and (16) as

c(kps + ki)W(s) = G(s)K(s)  = s(sz + as + ~,

(PI) controller

(16)

constant proportional

group the linear com-

(17)

which is now a third-order transfer-function, and separate out the nonlinear element which is
the gain k. To apply the Popov Stability Criterion stated in Section 3, we examine the Popov
plot of VV(.jw).  This plot reveals the range of values that the nonlinear gain k can assume
while retaining closed-loop stability. For this purpose, we need to compute the crossing of
the Popov plot of W(jo) with the real axis. In this case, from equation (17), we obtain

%teW(jw) =
–c[kPw2  + (ski – bkP)]

a2w2 + (b – W2)2

–c[(akp - ki)ti2  + bki]
wZmW(jw)  =

a2w2 + (b – W2)2

(18)

(19)

The Popov plot of W (jw) starts at the point P(-, ~) for w = O and ends at the
point Q(O, O) for w = W. Two distinct cases are now possible depending on the relative values
of k i and kP.

5.1 Case One: ki < akp

In this case, wZmW(jw)  is always  negative for all w, that is, the Popov plot of W(@) remains
entirely in the third and fourth quadrants and does not cross the real axis. This implies that
we can construct a straight-line with a non-negative slope passing through the origin such
that the Popov plot is entirely to the right of this line. Therefore, according to the Popov
Criterion, the range of the allowable nonlinear gain k is (O, 00). A typical Popov plot in this
case is given in Section 7.

5.2 Case TW O: k > akP

In this case, the Popov plot of VV(@) crosses the real axis. The crossover frequency WO is
found by solving uZmW(jw)  = O to yield
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2 _ bkiW* —
k i – akP

(20)

The value of W(jU) at the crossover is then obtained as

(ak, - ki)c
7?eW(jwO) =  ab (21)

indicating that the Popov plot crosses the negative real axis in this case. Therefore, the
mazimum  allowable nonlinear gain is

k
1 ab

m a z  =  —

ReW(jiwO) =  (kz -  akP)c
(22)

We can now construct a straight-line with anon-negative slope passing through the point
– ~ + jO such that the Popov plot of W(jw) is entirely to the right of this line: Thus the
ra~~~ of the allowable nonlinear gain k is (O, krnaz).  A typical Popov plot in this case is given
in Section 7.

Observe that the distinction between the above two cases is on the relative  values of the
proportional and integral gains kP and ki in the pl controller, @ not on their absolute
values. Notice that a reasonable estimate of the attenuation factor a of the transfer-function
(1) can readily be obtained experimentally from the open-loop response of the output y to
the step control input u. Specifically, the step response has the settling time of ts = & = ~
to reach within the +1% tolerance band of its final value [2].

6 Stability Analysis of Nonlinear PID Controllers
In this case, we employ the proportional-integral-derivative (PID)  controller

K(s) = kP + : + kds (23)

in cascade with the nonlinear gain k, where kP, kit and kd are the positive constant propor-
tional, integral, and derivative gains, respectively.

To investigate the absolute stability of the closed-loop system, we combine the linear
components (1) and (23) as

C(kdS2  + kps + ki)W(s) = G(s)K(s)  = S(S2 + aS + b, (24)

which is a third-order transfer-function, and separate out the nonlinear element which is the
gain k. In order to assess the stability of the closed-loop system, we examine the Popov plot
of W (.jw). This plot reveals the range of values that the nonlinear gain k can assume while
retaining closed-loop stability. In this case, from equation (24), we obtain
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7teW(ju) =
–C[(kp – ak&)2 + (ski  – bkp)]

a2w2 + (b – bJ2)2

–c[kdw4  + (akP – bkd – ki)u2 + bki]
wZmW(jw)  =

azwz + (b – 02)2

(25)

(26)

The Popov plot of W(jw)  starts at the point P(-, ~) for w = O and ends at the
point Q(O, –ckd) for w = m. To apply the Popov Criterion, we need to compute the crossing
of the Popov plot of W(jw)  with the real axis. From equation (26), it is clear that when
(ak, - bkd - L-i) >0 o r—

bkd + ki < akP (27)

then wZmW(ju)  is negative for all w, thus the Popov plot does not cross the real axis. In
this case, the range of the nonlinear gain k for stability is (O, cm). Hence equation (27) gives
a suficient,  but not a necessary, condition for closed-loop stability for all values of k.

When bkd + ki > akP, the closed-loop system may become unstable for some values of k“
These values of k correspond to the cases where the Popov plot crosses the real axis, that
is, wTmW(jti) = O. In the Appendix, the conditions under which this equation has positive
real roots are found. Two distinct cases are possible depending on the relative values of kP,
k i, and kd.

6 . 1  C a s e  O n e :  @ > 1*– ml

In this case, equation (26) cannot have positive real roots for w. Hence the Popov plot of
W (ju) does not cross the real axis and stays entirely in the third and fourth quadrants.
Therefore, according to the Popov Criterion, the range of the allowable nonlinear gain k is
(O, cm). A typical Popov plot for a = 20, b = c = 25, kP = 1, ki = 1, ancl ki = O.s is shown in
Figure 6, and confirms the above analysis.

In this case, the Popov plot of W(ju)  crosses the real axis. Equation (26) now has two
positive real roots WI and WZ, with WI < W2, which are the two crossover frequencies. These
frequencies are the roots of the following equation:

k@4 i- (akP – bkd – ki)w2 + bka = O (28)

which can be factored as:

(kdW2  - ki)(w’  - b)+ akpu2 = o (29)

The values of W (jw) at the two crossovers are then found from equation (25) as
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%?-ekl’(jul)  =
c[a(k& – ki) – )CP(LJ: – b)]

a2u~ + (b – @)2
(30)

for z=l, 2. Substituting for (w? – b) from equation (29) into equation (30) and simplifying
the result yields the surprisingly simple expression

ckP
7?eW(jwi)  =  ~ (31)

1
Now, for the Popov plot to cross the negative real axis, we need to find the condition

under which b < w?. Consider the polynomial

g(w2) = kdwd + (akP – bkd – ki)w2 + bki (32)

where the plot of g(w2) versus W2 is a parabola that crosses the ~2-axis at o? and o;. Since
kd >0, for any value of W2 “ inside” the parabola, the expression g(w2) is negative, while for
all values of W2 “outside” the parabola (including the origin W2 = O), the expression g(w2) is
positive. For W2 = b, we have g(b) = abkP >0, hence W2 = b is located outside the parabola,
that is, either b < w? < w; or w: < w; < b, To find out the condition for the former case

to occur, we only need to compare the location of the midpoint w: = “’;~: relative to b. In
order for b < w;, we need b < w:. Using the sum-of-roots relationship for equation (28) yields

b<–
akP – bkd – ki

2kd

which simplifies to

akP + bkd < ki

We conclude that when @ s I@ – fi[ and
W (jw) crosses the negative real axis [7?eW(jwi) < O],
upper-bounded by

(33)

(34)

akP + bkd < ki, the POpOV plot of

and the

1 w:—b
kmar  =  —

ReW(jwl)  =  ckP

to ensure closed-loop stability, that is, O < k < kmaz.  Notice
equation (35) the maximum nonlinear gain is bounded by

k
~ ki – akP – bkd

max 2ckPkd

nonlinear gain k must be

(35)

that since w? < w:, from

(36)

On
W(jw)

A typical Popov plot in this case is given in Section 7.
the other hand, when @ s I& – ~[ but akP + bkd a ki, the Popov plot of
crosses the positive real bxis [Re W( jwi) > O], and the general shape of the Popov plot
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can be seen from a typical case given in Section 7. It is seen that it is possible to construct
a straight-line with a positive slope passing through the origin such that the Popov plot is
entirely to the right of this line. Hence from the Popov Criterion the nonlinear gain k is
unbounded, that is, O < k < W.

From the condition akP + bkd < ki) we observe that the effect of the derivative gain kd is
to increase the range of the integral gain k i for stability. Notice that when kd = O, the result
of Section 5 for PI controllers, namely akP < ki, is obtained.

7 Illustrative Example

For the sake of illustration, computer simulations of the Popov plot for a robotic manipulator
with nonlinear PI and PID controllers are presented. Given the end-effecter transfer-function

25
G(s) = 52+  20s + 25 (37)

we investigate the stability of the closed-loop system using nonlinear controllers.

7.1 Nonlinear PI Controller

Using the fixed-gain PI controller

K(s) = kp + : (38)

in cascade with the nonlinear gain k, the Popov plots of W(s) = G(s)K(s) for the two values
of the proportional gain kP = 2 and kP = O are shown in Figures 7a-7b. For kP = 2, it is
seen from Figure 7a that the Popov plot of W (jw) does not cross the real axis as expected;
hence the allowable range of the nonlinear gain k is (O, cm). In contrast, when kP is reduced
to zero, Figure 7b reveals that the Popov plot of W(jw) crosses the real axis at –0.1, hence
the allowable range of k is now reduced to (O, 10). These results agree with the findings in
Section 5.

We conclude that increasing kP in the PI controller has a stabilizing effect and increases
the range of the allowable nonlinear gain k to maintain closed-loop stability.

7.2 Nonlinear PID Controller

In this case, we employ the fixed-gain PID controller

~(S) = 0.25+ ~ + kds (39)

in cascade with the nonlinear gain k. The
values of the derivative gain kd = O and kd

Popov plots of W(s) = G(s)K(s) for the two
= 2 are obtained, as shown in Figures 8a-8b.
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From Figure 8a, it is seen that when kd = O, the Popov plot crosses the negative real axis at
-0.05; hence the allowable range of the nonlinear gain kis (0,20). On the other hand, when
k~ is increased  tok~=  2, the Popovplot  in Figure 8b indicates that the positive real axis
is now crossed, and the range of the nonlinear gain k is now (O, cm). These results are in
agreement with those derived in Section 6.

We conclude that increasing kd in the PID controller has a stabilizing effect and increases
the range of the nonlinear gain k for maintaining closed-loop stability.

8 Conclusions
It is widely believed that a “perfect” control system must exhibit a fast response with no
overshoot. These two requirements are contradictory when linear controllers are used, and are
often impossible to achieve when the system operating conditions undergo gross variations. A
fast response requires a large gain which, in turn, gives rise to a large overshoot, manifesting
the contradiction of the two requirements. This paper proposes a simple solution to this
fundamental problem by enhancing a fixed-gain PID controller with a nonlinear gain k. The
nonlinear characteristics of the gain enables the achievement of fast initial response when k is
large, followed by a small overshoot when k is small. Thus the nonlinear PID controller does
not suffer from the disadvantage of large overshoots which often accompany a fast response.
This automatic adjustment of the gain is the main advantage of the nonlinear PID controller
over the conventional linear PID controller.

Current research is aimed at the implementation and practical validation of the proposed
nonlinear PID control schemes in robotic compliance and force control applications.
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10 Appendix
Consider the quadratic equation

AX2+BX+C=0 (40)

where the coefficients A, B, and C are constants, and A and C are known to be positive. We
wish to find the conditions on A, B, and C under which equation (40) will have two positive
real roots. Clearly j if the coefficient B is zero or positive, for any positive number X, the

13



expression (AX2 + BX + C) is positive. Hence, a suficient,  but not a necessary, condition
for not having a positive real root is B ~ O. Now, since the product-of-roots of equation (40)
is positive, this equation can only have either two positive real or two negative real roots.
Let A = B2 – 4AC be the discriminant. Then the conditions for existence of two positive
real roots are:

A20 ;  B<O (41)

The first condition yields

(B-2@) (B+2@) >0 (42)

Since (B – 2~) is negative in view of equation (41), the required condition becomes

B ~ –2~ (43)

Therefore, when B > –Zm,  equation (40) will not have two positive real roots.
To apply this result to the nonlinear PID controller in Section 6, we substitute: A =

kd, B = akP – bkd – ki, C = bki. This yields

akP –bkd–ki~ –2J=: (44)

Hence, the required condition for the Popov plot to cross the real axis is found to be

akP s (&– &)2

This equation yields the condition for real axis crossing as

Jzd=d-@

Therefore, when @> (@- ml, the Popov plot does

11
1.

2.

3.

(45)

(46)

not cross the real axis.
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